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When the flow over a submerged, round, upright cylinder, situated in a large ocean, 
is forced by a train of plane waves, linear theory (Yamamuro 1981) shows that the 
response can be abnormally large for certain forcing frequencies. The aim of this paper 
is to present a weakly nonlinear theory, where wave interactions, arising from the 
quadratic terms in the free-surface boundary conditions, can yield abnormally large 
responses. 

A specific interaction will be considered between a flow a t  a subharmonic frequency 
and a flow a t  the driving frequency. The reason for considering such an interaction 
derived from a consideration of some experimental results of Barnard, Pritchard & 
Provis (1981). 

1. Introduction 
If a train of plane waves of a certain frequency is incident on a submerged upright 

cylinder, situated in a large ocean (figure l ) ,  linear theory (Yamamuro-Renardy 1981) 
predicts that the overall amplitudes over the sill may become much larger than those 
of the deeper ocean. Such a phenomenon may be called ‘wave trapping’ or 
‘ near-resonance ’, referring to the unusually large response. The theory of trapping 
of water waves in three-dimensional flows, where the bottom topographies model the 
natural variations of the ocean floors, is difficult (Meyer 1971, 1979). Hence the 
idealized problem of a submerged upright cylinder, or sill, has received the most 
analysis (Longuet-Higgins 1967; Summerfield 1969; Pite 1977; Renardy 1983). All 
these works are based on a linear theory. I n  order to  verify the large near-resonances 
predicted by these theories. Barnard, Pritchard & Provis (1981) performed laboratory 
experiments and produced results which showed marked peaks a t  frequencies not 
associated with resonances predicted by linear theory. The purpose of this paper is 
to  examine a contribution of nonlinear effects to  the wave-trapping phenomenon. 

When wave amplitudes are rather small, the strongest nonlinear effects are to be 
expected to arise from wave interactions deriving from the quadratic terms in the 
sill region (McEwan 1971 ; Mahony & Smith 1972). Thus i t  seems appropriate to  
restrict attention to these in an initial investigation as to whether nonlinear effects 
can contribute significantly to  wave-trapping phenomena. Thus, if u is the frequency 
of the incident waves, attention will be limited to  interactions with waves of 
frequencies ;a and 2a. The velocity potential is then conveniently written as that  
of the linear solution plus the components excited by the nonlinear interactions. The 
calculation of the modal decomposition of the latter is complex and its difficulties 
are resolved in §§3 and 4. A possible subharmonic resonance is presented in $5 
together with a particular laboratory condition under which it can occur. 

The structure of the paper is as follows. I n  $2, the equations governing the flow 

2 F L M  130 



28 Y .  Renardy 

are presented. Let the sill region ( r  < 1 )  be denoted by D, and the outer region ( r  2 1 )  
by D,. In order to calculate the amplitude of the wave motion, i t  is necessary to solve 
a ‘homogeneous ’ problem in D,, namely a linearized problem forced by an outer flow 
of a fixed frequency. This is investigated in $3. The problem posed in D, is solved 
from an existing linear theory. The flow structure in D, is then used to generate a 
boundary condition at the sill edge r = 1 so that the problem is reduced to a 
boundary-value problem in D,. It is found from a separation of variables that an 
eigenstate in D,, periodic in time with a complex-valued frequency 0, consists of a 
‘wavelike’ mode and an infinite number of ‘decaying’ modes which decay rapidly 
away from the sill edge. I n  addition, there are an infinite number of complex-valued 
coefficients to be determined from the boundary conditions. Two methods for 
calculating the frequencies SZ and the coefficients are presented. The first is a 
collocation method, which was found to be time-consuming. The second is a 
non-standard iterative scheme, based on the smallness of the response of the decaying 
modes compared with that of the wavelike modes. 

In  $ 4  the solution to the ‘homogeneous’ problem provides a set of orthogonal 
functions, a combination of which can be used to form an expression for the surface 
elevation. The total sill solution is then written as a suitable combination of the 
orthogonal functions, superposed on the linear solution. 

In  $ 5 an example of such a nonlinear interaction is constructed. The example chosen 
here displays subharmonic resonance and was motivated by previous work on edge 
waves (Guza & Davis 1974; Minzoni & Whitham 1977 ; Rockliff 1978). The interaction 
involves three modes: two cos 28 modes at the forcing frequency, and a cos 8 mode 
at half that frequency. It is found that near-resonance occurs for two ranges of forcing 
frequencies. One range occurs near an eigenfrequency of the cos 28 mode, and the 
other occurs near twice an eigenfrequency of the cos 6 mode. 

2. Formulation of the problem 
It is assumed that the motion is inviscid and irrotational. Let the origin be defined 

at the undisturbed water level above the centre of the submerged circular cylindrical 
sill. Let the z* axis be taken upwards, the r* axis outwards and let ( r * ,  8, z * )  denote 
cylindrical coordinates. The radius of the sill is denoted by a ,  the depth of water above 
the sill is d ,  the depth outside the sill is D. Let the ratio d / D  of the depths be 6. 
The dimensionless variables (without asterisks) are 7 = ?*/a, z = z* /d,  r = r * /a ,  
$ ( r ,  8,  z ,  t )  = $*(r*, 8, z*,  t ) /d2a,  where q( r ,  8, t )  denotes the surface displacement 
and $ denotes the velocity potential. The geometry of the problem is shown in figure 
1 .  The domain over the sill ( r  < 1) is denoted by D, and that outside the sill ( r  2 1) 

and dimensionless amplitude 17 I I  is incident 
by D,. 

A train of plane waves of frequency 

The velocity potential satisfies Laplace’s equation : 
on the sill from the positive z-axis (8 = 0). 

The following boundary conditions apply. At large distances from the sill, the 
velocity potential must consist of the incident wave whose surface elevation is the 
real part of 

(2.2) = 17 I I  e-i(kz+d) 
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FIGURE 1 

where k is the positive real root of 

kD kD Da2 
-tanh- = -, 
a a 9  

and waves which travel or decay outwards. 
The free-surface boundary conditions expanded about the equilibrium level and 

retaining quadratic terms are (Phillips i966), for z = 0, r 2 0, 0 < 0 < 27c, the 

and 

where 

In order to calculate the final solution $, it is convenient to find an expression for 
9 before conditions (2.5) is used. The following ordering argument shows that 
condition (2.4) can be linearized. In  (2.4), Tt  is essentially -iwg if w is the frequency 
of the flow. Thus (2.4) yields 7 in the form - iwq = d2a$, +terms quadratic in $. When 
this is substituted into (2.5) for 7, it  can be seen that the quadratic terms of $ in 7 
contribute cubic terms to (2.5), which will be neglected. Hence the only terms in (2.4) 
that affect the final solution are the linear terms, so that Tt  = for the calculation 

Outside the sill, the linearized conditions will be applied since we consider 
geometries in which the ratio of the sill depth to the outer depth is small, and the 
wave amplitudes outside the sill are assumed to be rather small. Hence we restrict 
attention to weakly nonlinear effects solely in the sill region. Under these assumptions, 
the free-surface boundary conditions are, for z = 0, r 2 0, 0 < 0 < 2.n, 

of $. 
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and 
yt = ~ # ~ ( l  +O(slope)) in D,  and D,. 

Equation (2.8) can be used to recover the surface displacement if i t  is needed. As 
mentioned in Q 1,  only flows of frequencies u, 20. and +a will be investigated, so that 
condition (2.7) can be expressed in the following form: 

Here, and in what follows, the asterisk denotes the complex conjugate of preceding 
terms. fi, fz and f 3  are complex-valued functions of 4. They are thus determined once 
an expression for # is known and then substituted into (2.7) and (2.8), retaining only 
quadratic terms. 

a t  x = 1 ,  0 < r < 1 and z = -l /&, r > 1, 

The boundary conditions on rigid surfaces are : 

$* = 0; (2.10) 

a t r = 1 ,  - 1 / 6 < z < - l ,  
$hr = 0. (2.11) 

At r = 1 ,  - 1 < z < 0, 0 < 8 < 2n, the velocity is continuous, a condition which is 
equivalent to the continuity of q5 and q5r there. 

Consider the response of a solution of frequency w (o = u, iu or 2a). The linear 
terms in condition (2.9) show that the principal response of that mode is inversely 
proportional to - w 2  + Q2, where 52 is the associated eigenfrequency. Thus resonance 
is possible if - w 2  + Q2 is small and begins to become comparable to the dimensionless 
amplitude. Hence the homogeneous problem must be solved for the complex 
eigenfrequencies, of which there w e  a countable number (Meyer 1971, $4).  

The standard analysis for evaluating the eigenfrequencies 52 involves expressing 
the ( r ,  2)-dependence of the modes which vary as cos meednt  as a linear combination 
of an infinite number of functions separable in r and z .  These eigenfunctions are to 
satisfy the linearized conditions and are not forced by the plane waves. The conditions 
a t  r = 1 then yield an infinite matrix equation, whose zeros must be found in order 
to solve for Q. These eigenfunctions generalize the ‘free modes’ investigated by 
Longuet-Higgins (1967) using shallow-water theory. However, i t  is found that these 
eigenfunctions are not useful for the construction of the solution because they grow 
nearly exponentially with r and are not orthogonal over any finite range of r .  Hence, 
when these are substituted into (2.9), an integration over r will not yield the response 
of that  mode. It is shown in $83 and 4 that  these difficulties are avoided if attention 
is confined to the range r d 1 .  If q5s denotes the solution to the linearized problem 
in the sill region, the flow stucture outside the sill can be used to generate a boundary 
condition a t  r = 1 ,  giving q5s in terms of dq5Jdr. The admissible values for the complex 
frequencies in q5s are then found from this boundary condition, and the modes of 9, 
can be used in the construction of the solution for the full problem. 

3. The ‘homogeneous ’ problem 
As indicated in Q 1 ,  the discussion is focused on flows a t  the frequencies u, $0. and 

Zr, u being the driving frequency. In  the following, w denotes one of the three 
frequencies. 
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The problem formulated in $2 is essentially a superposition of two problems. Hence 
the solutions are expressed as $ = $L+$N. $L satisfies the linearized free-surface 
conditions, namely a t  z = 0, 0 d 19 d 27t, 0 < r 

and is forced by the plane waves represented by (2.2) and (2.3). $L has been calculated 
(Yamamuro-Renardy 1981) by a separation of variables for the regions D, and D,, 
and the velocity is made continuous throughout the flow. $N is constructed in $4 to 
make the total velocity potential $ satisfy the free-surface conditions (2.7) and (2.8). 
Both $L and $N satisfy conditions (2.10) and (2.11) a t  the solid walls. $N and $L 

interact through the free-surface conditions, and the solutions of interest are those 
in which $N becomes comparable to &,. 

In  order to construct $N, i t  is convenient to first consider a ‘homogeneous’ problem 
in D,. This problem of a linearized flow, forced a t  r = 1 by a boundary condition that 
reflects a flow in D,  of a fixed frequency o, will now be described together with the 
behaviour of its solutions. The actual construction of $N in D, from these solutions 
is presented in $4. Before posing the ‘homogeneous’ problem, the boundary condition 
a t  r = 1 for D, with an outer flow of a given frequency w (taken to  denote u, tu or 
2u) will be presented. Let $, denote the flow in D, and $2 the flow in D,. Since the 
flow is linear, the outer flow has the form (Yamamuro-Renardy 1981) 

co 

4 2 -  - 
m = o  

where h and A, are the roots of the dispersion relation (Davis & Hood 1976) 

{ i;n} tanh { = 7. (3.3) 

The coefficients B,, are as yet undetermined. The notations for the Bessel functions 
are those used by Abramowitz & Stegun (1972). The continuity of velocity a t  r = 1, 

(3.4) 

$, = $hl ( -1  < z < 0). (3.5) 
The expression (3.2) is substituted in (3.4). The orthogonality of the set 
{coshh(Sz+l) ,cosh.(Sz+i);n = 1,2, ...} over -l/S< z < Oisused, andintegration 
over z yields the B,, in terms of d$,/dr a t  r = 1. These equations are then used in 
(3.5) to eliminate the Bmn. A boundary condition for $rn(r ,z) ,  the coefficient of 
cosmBe-iwt in is obtained: at r = 1, - 1 < z < 0, 

where 
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boundary conditions (3.6) and 
The ‘homogeneous’ problem in D,, for each of the frequencies w ,  consists of the 

g 
$t t+  -j$, = 0 (2 = 01, 

$ , = O  ( z = - 1 ) .  

Separation of variables yields solutions of the form 

@,,(r, z )  cos me e-i*mnt, 

with 

Here Q,, denotes the nth largest frequency which is determined by condition (3.6). 
The ratios of the coefficients A,,/A, are also determined by (3.6), and A ,  is left 
undetermined. Two methods for their computation will now be described, together 
with the orthogonality of the set {@,,(r,O) ; m fixed, n = 1,2, . . .} for 0 < r < 1 .  

Substitution of (3.8) into condition (3.6) yields the following equations for the 
unknowns A,, A,,, k and kn:  

W 

A,L(k,z)+ C A,,L,(k, ,z)=O ( - 1  < z < O ) ,  
n - 1  

(3.10) 

where the operators L( k, z )  and L,( k,, z )  are defined in the appendix. The wavenumbers 
A and A, appearing in L and L, are obtained through (3.3) for any one value of w 
(a, +a or 2a). A matrix equation for A ,  and A,, is constructed by satisfying (3.10) 
at N values of z and neglecting the coefficients A,, for n 2 N .  This yields an N x N 
matrix. The Q’s can be obtained by a search through the complex plane as follows. 
The condition number of the matrix is computed over a grid of complex frequencies 
and those with relatively large condition numbers are taken to be approximations 
to the 0 s .  The matrix equation for A,,/A, can then be solved. Convergence with 
N was checked numerically. Since this procedure is time-consuming, an alternative 
method based on an interative scheme was devised. 

The iterative scheme is constructed to take advantage of the largeness of the 
response of the wavelike modes, represented by the Bessel functions J,, as compared 
with the response I A,,I of the decaying modes, and of the property that I A m p  I is 
smaller for larger p ;  i.e. the wavefield contains little of the modes that decay very 
fast away from the sill-edge. Equation (3.10) is multiplied by each of the functions 
of the set {coshk(z+l),cosk,(z+l); n =  1,2,  ...} and integrated over - 1  < z < O .  
Since the elements of that set are orthogonal to each other, the resulting equations 
take the form 

00 

Am X ( k ,  A n )  + I: Am, Xs(k,, A, A,) = 0 (m = 0, 1,2,  . . .), (3.11) 
s-1 

W 

Amp Y(kp, kp, A, An) + C Am, Y(ks, kp, A, An) = A m  Y(kt k p ,  A,  A n )  @ = 132, .. .). 
8-1 
S l P  (3.12) 

The functions X, X, and Y are defined in the appendix. 
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The iteration proceeds as follows. The first iterate for k,  denoted by k(O), is 
calculated from the following reduced form of (3.11), in which all decaying modes 
are neglected : 

where A is known. The corresponding frequency 0 ( O )  is calculated from 

dQ(0)2 
k(O) tanh k(0) = - (3.14) 

after which the k$‘) are calculated from (3.9). Next, the equations (3.12) are used to 
express A,, /A,  for n = 1,2 ,  . . . . Then, on using these relations to eliminate the A,,, 
(3.11) takes the form: 

q ( k )  +&Ah@) x2(k, k,) H& ($) = 0, (3.15) 

where x , (k )  represents the left-hand side of (3.13) and contains no decaying modes, 
x,(k, k,) involves the decaying modes, and the notation is defined in the appendix. 

The nth iterate k(,) (n = 1,2,  ...) is calculated by Newton’s method from (3.15) in 
which the term x 2 ( k ,  k,) is calculated a t  the known (n- 1)th iterate, i.e. 

9 

ah 
H& (%) = 0. xl(k(,)) + 6Ah(h) x2(k( , - l ) ,  (3.16) 

The corresponding 0(@ is then calculated from (3.14) with superscript n instead of 
0, after which (3.9) yields the ke) .  

A numerical check of the scheme was performed as follows. The 0 s  were compared 
with the eigenfrequencies for the entire domain, described towards the end of $2 
because they were expected to have similar values. The eigenfrequencies were 
calculated in a similar way to the 0s. The only difference was that, in (3.13) and (3.16), 
h was also an  unknown. Therefore, a t  each step of the iteration, the two equations 
(3.16) and 

ktanhk-6Atanhh = 0 (3.17) 

where solved simultaneously for k and A by Newton’s method. 
It is next shown that the set {@,,(r, 0); m fixed, n = 1 ,  2 , .  . . }  defined in (3.8) is 

orthogonal for 0 < r < 1. Let Qmp(r ,  z )  cos mOe-i*mpt and @,Jr, z )  cos mO e+*mqt be 
distinct (a,, =!= Qmq)  velocity potentials satisfying the ‘homogeneous ’ problem. An 
application of Green’s theorem to the volume of fluid D, yields 

I n  the integrals at r = 1 ,  Omq(l, z )  and Qmp(l, z )  are replaced by expressions 
involving dQmq(1,z)/dr and dQmp(l,z)/dr with the use of (3.6). Further, the 
property that Kw(z, z’) = Kw(z’, z )  in (3.7) is used to  reduce (3.18) to 

[ Q m p  ~ r n q l z  = o  r d r  = 0. 

Therefore the set (Qmn(r, 0) ; m fixed, n = 1,2,  . . .} is orthogonal for 0 < r < 1. These 
functions will be used to  represent &. 
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4. Form of ‘resonant’ solutions 
The q5N introduced in $3  must satisfy conditions (2.7), (2.8), (2.10), (2.11) and the 

radiation condition that the flow be non-growing a t  large r .  Let the part of q5N in 
D, be denoted by $N1 and that in D, by $N2. $N2 then satisfies linearized conditions. 
Both q5N1 and $N2 consist of flows of frequencies u, $a and 2g.  Hence &, is a 
superposition of the expressions (3.2) for w = u, +a and 2a. Attention will be focused 
on the sill region where 

(4.1) 

and Y1, Yz and Y3 must be determined. The continuity of $N a t  r = 1 yields the 
boundary condition (3.6) for q4Nl, namely the cosm8 modes in !PI, Y2 and Y3 must 
satisfy (3.6) for w = +a, a and 2a respectively. At z = 0, &l+& satisfies (2.7) and 
(2.8). At z = - 1 ,  d$,,/dz = 0. Hence 

#N1 = ediUt !Pl(r, 8, z )  +edgt Y2(r, 8, z )  +e-i2gt Y 3 ( r ,  8, z )  + *, 

o o c n  

&i E E [ a m ,  e-tiUt Qamn(r,  2) +Pmn e-iut Qpmn(r ,  2) 
m - o n - 1  

+ ymn eciZut Qymn(r, z ) ]  cos m8+ *, (4.2) 

where the sets {Qumn(r,  x ) } ,  (Qpmn(r ,  z ) }  and (Qymn(r, z ) }  represent the solutions (3.8) 
of the ‘homogeneous ’ problem for w = +u, u and 2a respectively, with am,, Pmn. ymn 
being the response coefficients of their wavelike modes. I n  addition, the orthogonality 
of these sets of functions is used to  calculate the coefficients a,,, Pmn and y m n  from 
the conditions a t  z = 0. For example, using the notation of (2.9), 

211 

fi(r, 0) cos m8 d8 

cos2 m8 d8 
J l Q u m n ( r > o )  1” j; ] rdr ,  

(4.3) 

where Q,,, is defined in (3.9) and corresponds to the solution Qamn given by (3.8) 
with w = iu. Similar equations yield P,, and y,,. 

I n  the representation of c,bN1 in (4.2), only a few of the constants a,,, Pmn, ymn,  
need to be determined: the others are negligible. For example, i t  can be seen from 
(4.3) that the response la,,/ is inversely proportional to I - ~ ~ 2 + . R ~ , , 1 ,  so that, in 
computations involving a particular geometry, it may be sufficient to include only 
the one a,, whose a,,, is the closest to $a. Similarly, only the Pmn for which Qpmn 
is closest to  cr and the ymn for which Qym,  is closest to 2 0  are expected to  be significant 
enough for inclusion in the interaction calculations. This simplifies An example 
of the simplest subharmonic resonance is an interaction of the cos 28 e-iut mode and 
the CosBe-iiut mode and is described in $5.  

5. Example of a near-resonance 
A particular set of conditions in which the foregoing theory yields near-resonance 

will be presented. In  order t o  simplify computations, the parameters 6 and d / u  will 
be chosen to be small. The smallness of d /u  ensures the smallness of the effect of the 
decaying modes in the flow in D,, so that in the ‘interaction’ equations, such as (4.3), 
the decaying modes will be assumed to be negligible. However, the decaying modes 
will not be neglected in the computation of the Qs since these arc required to a high 
order of accuracy. Furthermore, the smallness of 6 ensures that some of the as will 
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have very small imaginary parts, so that if the flow is forced near such an 
eigenfrequency, near-resonance is possible. 

The experimental scales of Barnard et al. (1981) were examined for the presence 
of near-resonant nonlinear interactions but were found not to  yield them. However, 
a choice of scales that  do is 

d = 2 cm, - = 0.005, 6 = 0.002, lrlI = 0.01. 

In  this case, the maximum amplitudes of the decaying modes is a t  least an order of 
magnitude less than that of the wavelike mode. Although these scales are unusual, 
there may be other realistic combinations where the nonlinear theory is applicable. 

An interaction of three modes will be considered : the (cos 8 e-liut + *) and 
(cos 28 e-jUt + *) modes in and the (cos 28 e-iut + *) mode in &. In  the sill region 
these are represented as follows: 

(5.1) 
d 
a 

qhL = A,  J ,  ($) cos 20 cosh k ( z  + 1)  e-jut + * + decaying modes, (5.2) 

& = a cos 8 e-giUtJl cosh u(z+ 1) + + decaying modes 

+ B cos 28e-iutJ, cosh y(z + 1) + * +decaying modes, (5.3) 

where 
dg2 dQ2 da; 

k tanh k = -, vtanh v = 2, p tanhp = -. 
9 9 9 

(5.4) 

0, represents the Q,,, defined in $4 that lies closest to &g for the cos8 mode, and 
0, is the QPmn that  is closest to u for the cos28 mode. The free-surface boundary 
conditions yield equations in the form of (4.3) : 

(5.5) aR, = ia*(A2 V, + B K ) ,  

where 
BR, = ia2K, 

The functions V,, V, and V, are defined in the appendix. The response for the linear 
forcing A,  can be calculated from a method described in Yamamuro-Renardy (1981). 
A trivial solution is a = 0 and B = 0. The questions to be resolved are whether there 
are any other solutions, and if so, under what conditions. 

Eliminating B from (5.5) and (5.6) yields 

5 a* = i  (A$ - + ia2 Rl&! ZE.!~..). (5.9) 

Let 

I g leis,. (5.10) a =  Ial&@, f=-- - v, v3 - Ifleie~, g = 1- . A ,  v, = 

Rl R2 Rl 

[cos el (cos, 8, - 1 + I g l z p ]  
If I 

Then 

(5.11) IaI2 = 

(5.12) 
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Next, B is evaluated via 
B = i a 2 b / R 2 .  (5.13) 

In  order that there be non-trivial solutions, two conditions must be satisfied, First, 
J 0 1 1 ~  must be positive, and, from (5.11), the conditions that must be met are 

( b )  
(a )  ~ 0 ~ ~ 6 , - 1 + 1 g 1 ~  2 0, 

if cos6,+ (cos26,-  1 + 1gI2)4 > 0 then there is at least one non-trivial lal. If 

cos 6,  - (cos2 6,- 1 + 1gI2)t > 0 

then there are two solutions for 1011. Secondly, (5.12) shows that Ia1211f1/1g1 must 
be less than or equal to 1.  

If 52, is close enough to IT, then k is approximately p, so that the total velocity 
potential in the sill region is (approximately) 

akr 
q5 x 01 cosBe-iiutJ, (7) cosh v(z+ 1) + @ + A 2 )  cosh 26e-iutJ2 (7) cash k ( z +  1) + *. 

(5.14) 

This approximation may be used for the present example. In  this case, computations 
revealed two ranges of forcing frequencies IT, in which near-resonance occurs. One 
range lies near 252, and the other is near 52,. I n  most of these ranges, the wave 
amplitudes were calculated to be rather high, so that instabilities may occur, after 
which the present theory may not be applicable. However, a t  the upper end of the 
range near 2Q,, the amplitudes were found to  be small enough so that the present 
steady-state theory might be observable in practice. 

The author is indebted to Professor J. J. Mahony (University of Western Australia) 
for suggesting this topic and for many helpful discussions. Thanks are also due to 
Dr W. G. Pritchard (University of Essex) for help in drafting this paper. The work 
for this paper was supported by a Commonwealth Postgraduate Research Award, the 
National Science Foundation Grant no. MCS-7927062 and the U.S. Army Contract 
no. DAAG29-80-C-0041. 

Appendix 

f ( k )  = J” cosh2k(z+ l ) d x ,  
-1 

E ,  i-m J, g) em i-mJk (2) 
F, = , F k =  

2h sinh h 2h sinh h ’ 

g ( h , k )  = J” coshh(6z+l)coshk(z+l)dz,  
-1 

PO 

h(h) = J cosh2h(6z+ 1) dz, 
-116 
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cash A(&+ 1) g(A ,  k) 
L(k, z )  = J,($)coshk(z+l)- 

+ c  
P - 1  

L , ( k , , z )  = cosk,(z+l)- 

cos A,(& + 1 )  g(iA,, ik,) k, I;(%) 1 m 
+ z  

P - 1  
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V, = -+[ -2  u sinh u( -a2k  sinh Ic+ k2cosh k) + ksinh k( -+a2 vsinh v 

+ v sin u ) ]  1: J, r$) J, ($) J, (7) r dr 

+a2 ( akcoshk =[ J;r$)J,(?)J;(f)rdr 

+ d2  - cosh k z  [ J, r?) J, (T) J, (y) $ 

+fksinhk-[ J,(~>J,(?)J,($)rdr), 

a2 

where k tanh k = da2 /g .  
V, is identical with V, but with p instead of k,  where p t anhp  = dSZi/g. 

V, = v 2  sinh u( - v cosh v+$u2 sinh v)  S, J, r$) J, (7) J, (7) r dr 

+ "( 2 u2 cash, v l  J, r$) Ji (F) J; (7) r dr 

- c c o s h Z  v 1 J, r$) J, (7) J, (-) avr -) dr . 
a2  d r  
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